Livak Method, Step One

BIO RAD

Example

Sample	Gene	
	C _T p53 (Target)	C _T GAPDH (Reference)
Control (calibrator)	15.0	16.5
Tumor (test)	12.0	15.9

- 1. Normalize C_T of the target gene to the C_T of the reference gene:
- ΔC_T (calibrator) = C_T (target, cal) C_T (reference, cal) = ΔC_T (control) = 15.0 - 16.5 = 1.5
- △C_T(test) = C_T(target, test) C_T(reference, test)
 = △C_T(tumor) = 12.0 15.9 = 3.9

Livak Method, Step Two

BIO RAD

$$\Delta C_T$$
(calibrator) = 15.0 - 16.5 = 1.5

$$\Delta C_T(\text{test}) = 12.0 - 15.9 = 3.9$$

2. Normalize ΔC_T of the test sample to the ΔC_T of the calibrator:

$$\Delta \Delta C_T = \Delta C_T (test) - \Delta C_T (calibrator)$$

Livak Method, Step Three

BIO RAD

$$\Delta\Delta C_T = -2.4$$

3. Calculate the fold difference in expression:

$$2^{-\Delta\Delta C_T}$$
 = Normalized expression ratio

$$2^{-(-2.4)} = 5.3$$

Tumor cells express p53 at a 5.3-fold higher level than control cells.